Random Eigenvalue Problems for Large Systems
نویسندگان
چکیده
The inherent uncertainties in geometry, material properties, etc. of engineering structures can be represented by stochastic models, where the parameters are described by probabilistic laws. Results from any analysis based on stochastic models inherit probabilistic information as well, which can be used e.g. for reliability analysis. Particularly in linear dynamics of structures the calculation and analysis of random eigenvalues and eigenvectors is crucial. A quite versatile, however computationally intensive way to analyze such systems is direct Monte Carlo Simulation. In this paper procedures are shown, which allow a significant reduction of computational efforts of the simulation using a subspace iteration scheme with " optimally " selected start-vectors. As the subspace iteration procedure, although quite accurate, requires a factorization of the stiffness matrix, as an alternative, a procedure based on component mode synthesis is suggested.
منابع مشابه
Extremely strong convergence of eigenvalue-density of linear stochastic dynamical systems
Eigenvalue problems play a crucial role in the stability and dynamics of engineering systems modeled using the linear mechanical theory. When uncertainties, either in the parameters or in the modelling, are considered, the eigenvalue problem becomes a random eigenvalue problem. Over the past half a century, random eigenvalue problems have received extensive attentions from the physicists, appli...
متن کاملSolution of Large Eigenvalue Problems in ElectronicStructure Calculations
Predicting the structural and electronic properties of complex systems is one of the outstanding problems in condensed matter physics. Central to most methods used in molecular dynamics is the repeated solution of large eigenvalue problems. This paper reviews the source of these eigenvalue problems, describes some techniques for solving them, and addresses the diiculties and challenges which ar...
متن کاملLarge deviations of the maximum eigenvalue for wishart and Gaussian random matrices.
We present a Coulomb gas method to calculate analytically the probability of rare events where the maximum eigenvalue of a random matrix is much larger than its typical value. The large deviation function that characterizes this probability is computed explicitly for Wishart and Gaussian ensembles. The method is general and applies to other related problems, e.g., the joint large deviation func...
متن کاملA tight bound of the largest eigenvalue of sparse random graph
We analyze the largest eigenvalue and eigenvector for the adjacency matrices of sparse random graph. Let λ1 be the largest eigenvalue of an n-vertex graph, and v1 be its corresponding normalized eigenvector. For graphs of average degree d log n, where d is a large enough constant, we show λ1 = d log n + 1 ± o(1) and 〈1, v1〉 = √ n ( 1−Θ ( 1 logn )) . It shows a limitation of the existing method ...
متن کاملRobust Preconditioning of Large, Sparse, Symmetric Eigenvalue Problems
Iterative methods for solving large, sparse, symmetric eigenvalue problems often encounter convergence diiculties because of ill-conditioning. The Generalized Davidson method is a well known technique which uses eigenvalue preconditioning to surmount these diiculties. Preconditioning the eigenvalue problem entails more subtleties than for linear systems. In addition, the use of an accurate conv...
متن کاملPartial Eigenvalue Assignment in Discrete-time Descriptor Systems via Derivative State Feedback
A method for solving the descriptor discrete-time linear system is focused. For easily, it is converted to a standard discrete-time linear system by the definition of a derivative state feedback. Then partial eigenvalue assignment is used for obtaining state feedback and solving the standard system. In partial eigenvalue assignment, just a part of the open loop spectrum of the standard linear s...
متن کامل